
Data Structures
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

© 2022 Arthur Hoskey. All
rights reserved.

Today’s Lecture

 Overview of Lists
 Ordered List
 Contiguous data representations (array-

based list)

© 2022 Arthur Hoskey. All
rights reserved.

Lists

List

"Container". Holds other objects.

List (ordered is the default)

A list in which the order of items matters;

[20, 30, 10, 40] is different from [30, 40, 20, 10].

Unordered list

A list in which data items are placed in no particular order;
[20, 30, 10, 40] is equal to [30, 40, 20, 10].

Sorted list

A list that is sorted by the value in the key; there is a semantic
relationship among the keys of the items in the list. For example,
[10, 20, 30, 40]

© 2022 Arthur Hoskey. All
rights reserved.

Lists

Linear relationship
◦ Each element except the first has a unique
predecessor

◦ Each element except the last has a unique
successor

Length
The number of items in a list; the length

can vary over time

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List

 Here is an ordered list.

1. How did the elements get into the list?

2. Why are they in this particular order?

Ordered List

14329177835011

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List

 Inserted the items in the following order:

 11, 50, 83, 77, 91, 32, 14

1. Which element is at the start of the list?

2. Which element is at the end of the list?

Ordered List

14329177835011

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List ADT

Abstract Data Type (ADT)
A data type whose properties (domain and

operations) are specified independently of
any particular implementation

What operations should we provide for our
ordered list ADT???

© 2022 Arthur Hoskey. All
rights reserved.

List Interface

 Here is the List Interface we will be using:

public interface List {
 public void insertItem(int item);
 public void deleteItem(int target);
 public boolean hasItem(int target);
 public int retrieveItem(int target) throws Exception;
 public void makeEmpty();
 public boolean isFull();
 public int getLength();
}

Note: Java has it own predefined List interface, but it is more
complicated, so we are using our own version.

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List Implementation

 How are the items ACTUALLY stored?

Ordered List

14329177835011

© 2022 Arthur Hoskey. All
rights reserved.

Contiguous Data Representation

Contiguous Data Representation

 Definition of contiguous
◦ Being in actual contact : touching along a boundary or at a

point.

◦ Definition taken from: https://www.merriam-
webster.com/dictionary/contiguous

 Data is allocated in a block (for example an array).

 The data are all stored next to each other in this
block.

© 2022 Arthur Hoskey. All
rights reserved.

https://www.merriam-webster.com/dictionary/actual

Ordered List – Array Based

 Elements can be stored in an array.

 For example:

What if we insert another?

What do we need to do?

Ordered List

 0 1 2 3 4 5 6

14329177835011

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List – Array Based

 You could resize the array every time you
added an element.

 For example: insertItem(22)

 Array can now store eight elements.

 22 is in the new slot.

Ordered List

 0 1 2 3 4 5 6 7

14329177835011 22

What else

could we do?

© 2022 Arthur Hoskey. All
rights reserved.

Hotel Room Usage

 Hotel

 Are all rooms in a hotel always occupied by
customers?

 Is the following always true:

of rooms = # of rooms occupied by customers?

© 2022 Arthur Hoskey. All
rights reserved.

Hotel Room Usage

 The hotel does not build a new room when a customer
arrives.

 The hotel does not destroy a room when a customer
leaves.

 They just keep track of the rooms that are being used.

 Most of the time:

of rooms != # of rooms occupied by customers

© 2022 Arthur Hoskey. All
rights reserved.

Hotel Room Usage

 Max Rooms – The total number of rooms in the
hotel.

 Occupied Rooms – The number of rooms that are
actually being used.

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List – Array Based

 The array elements are like rooms in a hotel.

 Make the array larger than the number of items being storing (allows for
growth).

 We can just keep track of which ones are being used.

 Max = 10 (for this example)

 Occupied = 8 (first eight elements are being used)

Ordered List

 0 1 2 3 4 5 6 7 8 9

length

14329177835011 0022

8

What happens if

we add an item?

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List – Array Based

 Adding item

 Increment length

 Put data in that new element

Ordered List

 0 1 2 3 4 5 6 7 8 9

length

14329177835011 04422

9

44 was added to the

list. It is put in the next

unoccupied room.

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List

 Array-based private members

class OrderedList implements List {

 Declare int length

 Declare int[] info

 // Public members go here…

}

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List - Constructor

 What should the OrderedList
constructor do?

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List - Constructor

 What should the OrderedList
constructor do?

OrderedList Constructor

 Set length to 0

 Set info to new array of int instance

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List – isFull and
makeEmpty

boolean isFull()

 return (length equals info.length);

makeEmpty()

 Set length to 0 Logically clear the data. No

need to do anything with

the array (do not destroy

the "hotel" rooms)

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List - insertItem

insertItem(int item)
 Set info[length] to item
 Increment length

What is going on with this code?

Note: In practice, you should

have code to make sure that

list is not full before adding

item (left of sample code to

make it as simple as possible)

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List - insertItem

 Run the following code:

 Declare ol as OrderedList

 // Other code to fill the ordered list goes here…

 ol.insertItem(44)

Ordered List

 0 1 2 3 4 5 6 7 8 9

length

14329177835011 0022

8

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List - insertItem

 Here is what the array would look like:

 Declare ol as OrderedList

 // Other code to fill the ordered list goes here…

 ol.insertItem(44)

Ordered List

 0 1 2 3 4 5 6 7 8 9

length

14329177835011 04422

9 The new element was

inserted and the

length was updated.

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List - hasItem

 Now search for an item:

 Declare ol as OrderedList

 // Code to fill ol goes here…

 Set target to 83;

 Declare found as boolean

 Set found to ol.hasItem(target);

Ordered List

 0 1 2 3 4 5 6 7 8 9

length

14329177835011 04422

9

RetrieveItem checks if the

a given item is in the list.

This code will return true

in found since 83 is in the

list.

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List - hasItem

boolean hasItem(int target)

 Declare i as int

 Set i to 0

 Declare found as

 Set found to false

 while i less than length

 if info[i] equals target

 return true

 endIf

 Increment i

 endWhile

 return false

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List - deleteItem

 Now search for an item:

 Declare ol as OrderedList

 // Fill Ordered code here…

 Declare target as int and set to 50

 ol.deleteItem(target);

Ordered List

 0 1 2 3 4 5 6 7 8 9

length

14329177835011 04422

9

How does

deleteItem work?

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List - deleteItem

 Now search for an item:

 Declare ol as OrderedList

 // Fill Ordered code here…

 Declare target as int and set to 50

 ol.deleteItem(target);

Ordered List

 0 1 2 3 4 5 6 7 8 9

length

14329177835011 04422

9

1. Find the item location

in the array

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List - deleteItem

 Now search for an item:

 Declare ol as OrderedList

 // Fill Ordered code here…

 Declare target as int and set to 50

 ol.deleteItem(target);

Ordered List

 0 1 2 3 4 5 6 7 8 9

length

22143291778311 04444

9

1. Find the item location in

the array

2. Shift all elements that

index to the end of the

array

© 2022 Arthur Hoskey. All
rights reserved.

Ordered List - deleteItem

 Now search for an item:

 Declare ol as OrderedList

 // Fill Ordered code here…

 Declare target as int and set to 50

 ol.deleteItem(target);

Ordered List

 0 1 2 3 4 5 6 7 8 9

length

22143291778311 04444

8

1. Find the item location in

the array

2. Shift all elements that

index to the end of the

array

3. Decrement length

© 2022 Arthur Hoskey. All
rights reserved.

Big-O Comparison

Now we will finish with Big-O…

© 2022 Arthur Hoskey. All
rights reserved.

Big-O Comparison

 It is important to know the approximate
runtime cost of the operation when you
create a data structure.

 What are the Big-O runtimes for the list
implementations?

© 2022 Arthur Hoskey. All
rights reserved.

Big-O Comparison

 Now analyze the ordered list operations
for speed.

 What are the Big-O runtimes for the
array-based list implementation?

© 2022 Arthur Hoskey. All
rights reserved.

Big-O Comparison – Ordered List
(Array Based)

Operation Cost

makeEmpty ???

isFull ???

getLength ???

retrieveItem ???

insertItem ???

deleteItem ???

resetList ???

getNextItem ???

© 2022 Arthur Hoskey. All
rights reserved.

Big-O Comparison – Ordered List
(Array Based)

Operation Cost

makeEmpty O(1)

isFull O(1)

getLength O(1)

retrieveItem O(n)

insertItem O(1)

deleteItem O(n)

resetList O(1)

getNextItem O(1)

© 2022 Arthur Hoskey. All
rights reserved.

End of Slides

 End of Slides

© 2022 Arthur Hoskey. All
rights reserved.

	Slide 1: Data Structures
	Slide 2: Today’s Lecture
	Slide 3: Lists
	Slide 4: Lists
	Slide 5: Ordered List
	Slide 6: Ordered List
	Slide 7: Ordered List ADT
	Slide 8: List Interface
	Slide 9: Ordered List Implementation
	Slide 10: Contiguous Data Representation
	Slide 11: Ordered List – Array Based
	Slide 12: Ordered List – Array Based
	Slide 13: Hotel Room Usage
	Slide 14: Hotel Room Usage
	Slide 15: Hotel Room Usage
	Slide 16: Ordered List – Array Based
	Slide 17: Ordered List – Array Based
	Slide 18: Ordered List
	Slide 19: Ordered List - Constructor
	Slide 20: Ordered List - Constructor
	Slide 21: Ordered List – isFull and makeEmpty
	Slide 22: Ordered List - insertItem
	Slide 23: Ordered List - insertItem
	Slide 24: Ordered List - insertItem
	Slide 25: Ordered List - hasItem
	Slide 26: Ordered List - hasItem
	Slide 27: Ordered List - deleteItem
	Slide 28: Ordered List - deleteItem
	Slide 29: Ordered List - deleteItem
	Slide 30: Ordered List - deleteItem
	Slide 31: Big-O Comparison
	Slide 32: Big-O Comparison
	Slide 33: Big-O Comparison
	Slide 34: Big-O Comparison – Ordered List (Array Based)
	Slide 35: Big-O Comparison – Ordered List (Array Based)
	Slide 36: End of Slides

