
Java Programming
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

© 2022 Arthur Hoskey. All
rights reserved.

Today’s Lecture

 JavaFX

 Event Handling

 Model View Controller

© 2022 Arthur Hoskey. All
rights reserved.

JavaFX – Button/Event Handling

 A window with a Label was interesting but it
didn’t do a thing!

 Now let’s put a button inside the window.

 To use a button in a window you need to do the
following:

1. Create a button instance and associate it with
the window.

2. Add an event handler for the button.

© 2022 Arthur Hoskey. All
rights reserved.

JavaFX – Button/Event Handling

Event: Something that occurs

 Pressing the mouse button is an event.

 Pressing a key is an event.

 To make the program do something when the button is
pressed we must "handle" the event of the button being
pressed.

© 2022 Arthur Hoskey. All
rights reserved.

JavaFX- EventHandler

Scene

Press me

The handleButtonAction method contains code that

should run when the button is pressed.

Where does the event handler go? Which class is it in?

© 2022 Arthur Hoskey. All
rights reserved.

When the button is pressed the handle method

gets called:

@FXML

protected void handleButtonAction(ActionEvent event) {

System.out.println(“button pressed”);

}

“Button

Press”

Model View Controller Overview

Model View Controller (MVC)

 MVC Pattern stands for Model-View-Controller Pattern.

 Separates an application’s logic and its presentation.

 This separation is good because you can make changes to
the view of the data and not effect the logic.

 BEST SEPARATION
◦ Use only FXML for the display.

◦ Use Java for the business logic.

 Some of above taken from:
http://www.tutorialspoint.com/design_pattern/mvc_pattern.htm

© 2022 Arthur Hoskey. All
rights reserved.

http://www.tutorialspoint.com/design_pattern/mvc_pattern.htm

Model View Controller Overview
© 2022 Arthur Hoskey. All
rights reserved.

View
(GUI -FXML file)

Model
(Data)

Controller
(Performs actions)

User

Updates

Sees Uses

Manipulates

Taken from:
http://www.tutorialspoint.com/design_pattern/mvc_pattern.htm

http://www.tutorialspoint.com/design_pattern/mvc_pattern.htm

Model View Controller Overview

 Model - Model represents an object or Java POJO
carrying data. It can also have logic to update
controller if its data changes.

 View - View represents the visualization of the data
that model contains.

 Controller - Controller acts on both model and view.
It controls the data flow into the model object and
updates the view whenever data changes. It keeps
the view and the model separate.

 Above taken from:
http://www.tutorialspoint.com/design_pattern/mvc_pattern.htm

Note: POJO stands for Plain Old Java Object

© 2022 Arthur Hoskey. All
rights reserved.

http://www.tutorialspoint.com/design_pattern/mvc_pattern.htm

FXML and MVC

 Model – Java classes that store data.

 View – FXML code. Defines the application display.

 Controller – Java classes that are responsible for
putting data into the view and into the model.

© 2022 Arthur Hoskey. All
rights reserved.

MVC in Java with FXML

MVC in Java with FXML

1. FXML (the view) – Define the view GUI using
FXML code (.fxml files).

2. Controller class - Write a Controller class in
Java that will handle events and associate its
member variables with FXML controls.

3. Model class – Write Java classes for the
model. Declare member variables of the model
classes in the controller class. This holds the
application's data.

© 2022 Arthur Hoskey. All
rights reserved.

FXML - View (MVC)

 FXML code (sampleui.fxml):

<VBox

xmlns:fx="http://javafx.com/fxml"

fx:controller="bcs345.practice.javafx.fxml.MyController"

>

<Button

text="Show Message"

onAction="#handleButtonAction"

fx:id="messageButton"

/>

<Label

text = "DEFAULT"

fx:id="messageOutputLabel"

/>

</VBox>

© 2022 Arthur Hoskey. All
rights reserved.

Full name of

controller class

(includes package)

FXML - View (MVC)

 FXML code (sampleui.fxml):

<VBox

xmlns:fx="http://javafx.com/fxml"

fx:controller="bcs345.practice.javafx.fxml.MyController"

>

<Button

text="Show Message"

onAction="#handleButtonAction"

fx:id="messageButton"

/>

<Label

text = "DEFAULT"

fx:id="messageOutputLabel"

/>

</VBox>

© 2022 Arthur Hoskey. All
rights reserved.

This is the FULL name of the Java

controller class (on next slide). It

should use the package name

FROM YOUR PROJECT.

Name of the method on the controller

that should be called when button is

pressed (must have a # prefix)

Id of the button. Needs to have

the same exact name as the

Button member on the controller

id of the label. Needs to have the

same exact name as the Label

member on the controller

FXML – Controller (MVC)

 FXML controller in Java (MyController.java) :
Package bcs345.practice.javafx.fxml;

public class MyController {

@FXML

private Button messageButton;

@FXML

private Label messageOutputLabel;

@FXML

protected void handleButtonAction(ActionEvent event) {

System.out.println("Button pressed");

}

}

© 2022 Arthur Hoskey. All
rights reserved.

Controller class definition

Id for FXML attribute must match the

member variable name for the button

(creates an association between the two)

Button event handler. The onAction

attribute of the button definition in

FXML has the name of this method

Id for FXML attribute must match the

member variable name for the label

Displays the string “Button

pressed " in the console window

FXML attribute makes it

known that this will be

used by FXML markup

Change Label in Code

 When the previous application runs and the button is
pressed it prints a message in the console window.

 We can update the code so that it also changes the
contents of the label.

 Update the handleButtonAction method in the controller:

@FXML

protected void handleButtonAction(ActionEvent event) {

System.out.println("Button pressed");

messageOutputLabel.setText("Button pressed");

}

© 2022 Arthur Hoskey. All
rights reserved.

Press Show

Message

Button

FXML Loader

 The FXML loader generates instances for the Java equivalent of
the FXML code (creates the scene graph and returns the root
control of the scene graph).

 The FXML loader also creates the controller instance for you (calls
new for the controller in the background).

© 2022 Arthur Hoskey. All
rights reserved.

FXML
Loader

Sampleui.fxml

Java instances
(Controller,

Label, Button,
etc…)

input generates

FXML Code

<Label text = "DEFAULT"

fx:id="messageOutputLabel“ />

Java Code That Gets Created Behind the Scenes

messageOutputLabel = new Label(“DEFAULT”);

// Also calls new on MyController

FXML – Controller (MVC)

 We did NOT add code to create an instance of
MyController (no call to new).

 The MyController instance is created behind the
scenes by the FXMLLoader!!!

© 2022 Arthur Hoskey. All
rights reserved.

Model (MVC)

 The previous simple examples did not use a model.

 We could add a model to the code.

 The model would be placed in the controller.

 Assume that we already wrote a Person class.
public class MyController {

private Person[] person = new Person[100];

@FXML

private Button messageButton;

@FXML

private Label messageOutputLabel;

@FXML

protected void handleButtonAction(ActionEvent event) {

// Code that uses the person array (the model) goes here…

}

}

© 2022 Arthur Hoskey. All
rights reserved.

Model

The person member is the

model in this example.

You could have multiple

members if you want.

Get Controller Instance

 The instance load method version has the benefit of being
able to retrieve the controller instance (cannot do this
using the static load method).

 Use this if you need to directly access the controller.

 Example (get the controller):

// Create instance of FXMLLoader

FXMLLoader loader=new FXMLLoader(getClass().getResource("sampleui.fxml"));

// Call load on the loader

root = loader.load();

// Get the controller from the loader instance

MyController myController;

myController = loader.<MyController>getController();

© 2022 Arthur Hoskey. All
rights reserved.

Get

controller

instance

Creates controller

instance behind the

scenes

Controller initialize()

Controller initialize()

 You can add an initialize method to your controller class.

 The initialize method of the controller is useful for GUI
initialization code.

 initialize() gets called automatically AFTER the constructor is
called and AFTER all @FXML variables have been initialized.

 The constructor cannot be used for GUI initialization code
because the @FXML variables have not been initialized yet when
it runs

@FXML

public void initialize() {

// Your GUI initialization code goes here…

}

© 2022 Arthur Hoskey. All
rights reserved.

End of Slides
© 2022 Arthur Hoskey. All
rights reserved.

	Slide 1: Java Programming
	Slide 2: Today’s Lecture
	Slide 3: JavaFX – Button/Event Handling
	Slide 4: JavaFX – Button/Event Handling
	Slide 5: JavaFX- EventHandler
	Slide 6: Model View Controller Overview
	Slide 7: Model View Controller Overview
	Slide 8: Model View Controller Overview
	Slide 9: FXML and MVC
	Slide 10: MVC in Java with FXML
	Slide 11: FXML - View (MVC)
	Slide 12: FXML - View (MVC)
	Slide 13: FXML – Controller (MVC)
	Slide 14: Change Label in Code
	Slide 15: FXML Loader
	Slide 16: FXML – Controller (MVC)
	Slide 17: Model (MVC)
	Slide 18: Get Controller Instance
	Slide 19: Controller initialize()
	Slide 20: End of Slides

